Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-510112

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 600 million cases and over 6 million deaths worldwide. Vaccination has been the main strategy used to contain the spread of the virus, and to avoid hospitalizations and deaths. Currently, there are two mRNA-based and one adenovirus vectored vaccines approved and available for use in the U.S. population. The versatility, low cost and rapid-to-manufacture attributes of DNA vaccines are important advantages over other platforms. However, DNA vaccination must meet higher efficiency levels for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been successfully used in the veterinary field. Here we evaluated the safety, immunogenicity and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate for delivered by intramuscular injection followed by electroporation (Vet-ePorator) in ferrets. The results demonstrated that the linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects, and was able to elicit neutralizing antibodies and T cell responses using a low dose of the linear DNA construct in prime-boost regimen, and significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-500860

RESUMO

Since its first detection in China in late 2019, SARS-CoV-2, the etiologic agent of COVID-19 pandemic, has infected a wide range of animal species, especially mammals, all over the world. Indeed, as reported by the American Veterinary Medical Association, besides human-to-human transmission, human-to-animal transmission has been observed in some wild animals and pets, especially in cats. With animal models as an invaluable tool in the study of infectious diseases combined with the fact that the intermediate animal source of SARS-CoV-2 is still unknown, researchers have demonstrated that cats are permissive to COVID-19 and are susceptible to airborne infections. Given the high transmissibility potential of SARS-CoV-2 to different host species and the close contact between humans and animals, it is crucial to find mechanisms to prevent the transmission chain and reduce the risk of spillover to susceptible species. Here, we show results from a randomized Phase I/II clinical study conducted in domestic cats to assess safety and immunogenicity of a linear DNA ("linDNA") vaccine encoding the RBD domain of SARS-CoV-2. No significant adverse events occurred and both RBD-specific binding/neutralizing antibodies and T cells were detected. These findings demonstrate the safety and immunogenicity of a genetic vaccine against COVID-19 administered to cats and strongly support the development of vaccines for preventing viral spread in susceptible species, especially those in close contact with humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...